The invention relates to the mechanical engineering, in particular to manufacture of gear wheels.
The process for smoothing the wheel teeth of the bevel gearing consists in moving a tool, the trajectory of which is coupled with the mobile system of coordinates $\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1}$ about the blank, fixed into the machine tool, coupled with the fixed system of coordinates $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$. At the beginning of working, the two coordinate systems coincide in point O , called the center of space-spherical motion. The blank rotates with an angular speed $\omega$ about its axis, coinciding with the axis Z . The radius center of the tool work surface coincides at the beginning of working with the blank conic generator, and the tool movement at the angle $\delta \geq 0$ with respect to the plane formed by the axes $\mathrm{X}_{1}, \mathrm{Y}_{1}$ is provided by controlling the position of the carriage. The tool executes a circular movement about the axis $\mathrm{O}_{1}-\mathrm{O}_{1}$, at the same time it is communicated an oscillatory motion with respect to the work tooth, i.e. with respect to the $O X Y Z$ coordinate system. At the same time, the axis $Z_{1}$ of the mobile system of coordinates $\mathrm{OX}_{1} \mathrm{Y}_{1} \mathrm{Z}_{1}$ is placed about the axis Z at a nutation angle $\Theta$ and describes a conic surface with origin in point O - the center of space-spherical motion.
The mobile system of coordinates $\mathrm{OX}_{1} \mathrm{Y}_{1} \mathrm{Z}_{1}$ is placed with respect to the fixed coordinate system so that the axes $\mathrm{X}_{1} \mathrm{Y}_{1}$ may execute a motion around the corresponding axes according to the trajectories with parameters corresponding to the nutation $\Theta$ and precession $\Psi$ angles.
Thus, during rotation of axis $\mathrm{Z}_{1}$ about the axis Z the tool is communicated an oscillatory motion with respect to the OXYZ coordinate system, described by the equations:
$X=-R_{i}(1-\cos \Theta) \cos \Psi \sin \Psi ;$
$Y=R_{i}\left(\sin ^{2} \Psi+\cos \Theta \cos ^{2} \Psi\right) ;$
$Z=-R_{i} \sin \Theta \cos \Psi$,
where:
$\mathrm{R}_{\mathrm{i}}$ - the recurrent coordinate of the mobile axes, equal to the length from the origin of coordinates $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ up to the plane wherein the fixed point is situated;
$\Theta$ - the nutation angle;
$\Psi$ - the precession angle.
Claims: 9
Fig.: 11

