a 2018 0109

The invention relates to semiconductor technology and can be used, in particular, in devices for converting solar radiation into electrical energy.

The method for $p^+InP-p^-InP-n^+CdS$ structure growth for photovoltaic cells consists in that the p^-InP layer is grown on a substrate, made in the form of a p^+InP plate with crystallographic orientation (100), misorientation of 3...5° in the direction (110) and charge carrier concentration of 10^{18} cm⁻³, is deposited on the frontal part of the plate by the quasiclosed volume method a n^+CdS layer, is deposited on the reverse side of the plate an ohmic contact of Ag+5% Zn, is thermally treated at a temperature of 450°C, is deposited the ohmic contact of In onto the n^+CdS layer, is thermally treated at a temperature of 250°C, and is deposited by the electron beam evaporation method, at a temperature of 300°C, a SiO_2 antireflection layer.

Claims: 1